predict generic function for S3method
Usage
predict(
x,
new.data,
new.exposure.data,
ci.level = 0.95,
type = "response",
outcome = NULL,
fixed.idx = list(),
est.dlm = FALSE,
verbose = TRUE,
...
)
# S3 method for class 'hdlm'
predict(
x,
new.data,
new.exposure.data,
ci.level = 0.95,
type = "response",
outcome = NULL,
fixed.idx = list(),
est.dlm = FALSE,
verbose = TRUE,
...
)
# S3 method for class 'hdlmm'
predict(
x,
new.data,
new.exposure.data,
ci.level = 0.95,
type = "response",
outcome = NULL,
fixed.idx = list(),
est.dlm = FALSE,
verbose = TRUE,
...
)
Arguments
- x
fitted dlmtree model with class 'hdlm', 'hdlmm'
- new.data
new data frame which contains the same covariates and modifiers used to fit the model
- new.exposure.data
new data frame/list which contains the same length of exposure lags used to fit the model
- ci.level
credible interval level for posterior predictive distribution
- type
type of prediction: "response" (default) or "waic". "waic" must be specified with `outcome` parameter
- outcome
outcome required for WAIC calculation
- fixed.idx
fixed index
- est.dlm
flag for estimating dlm effect
- verbose
TRUE (default) or FALSE: print output
- ...
not used
Value
list with the following elements:
- ztg
posterior predictive mean of fixed effect
- ztg.lims
lower/upper bound of posterior predictive distribution of fixed effect
- dlmest
estimated exposure effect
- dlmest.lower
lower bound of estimated exposure effect
- dlmest.upper
upper bound of estimated exposure effect
- fhat
posterior predictive mean of exposure effect
- fhat.lims
lower/upper bound of posterior predictive distribution of exposure effect
- y
posterior predictive mean
- y.lims
lower/upper bound of posterior predictive distribution